Harmonic Analysis on Vector Spaces over Finite Fields

نویسنده

  • Anthony Carbery
چکیده

• (i) G = ZN = Z/NZ = {0, 1, 2, ....., N − 1} with addition modulo N . For 0 ≤ n ≤ N − 1 let γn : G → S, γn(m) = exp(2πimn/N). Then {γ0, ....., γN−1} is a complete list of the characters so that ZN is isomorphic to ZN . An example of a primitive N ’th root of unity is ω := exp 2πi/N . • (ii) G = T = R/Z; for n ∈ Z let γn : G→ S, γn(x) = exp(2πinx). Then G∗ = {γn : n ∈ Z} so that G∗ is isomorphic to Z. • (iii) G = Z; for θ ∈ T let γθ : G → S, γθ(n) = exp(2πinθ). Then G∗ = {γθ : θ ∈ T} so that G∗ is isomorphic to T. • (iv) G = R; for ξ ∈ R let γξ : G → S, γξ(x) = exp(2πixξ). Then G∗ = {γξ : ξ ∈ R} so that G∗ is isomorphic to R. • (v) (G1 ×G2) is isomorphic to G1 ×G2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classical Wavelet Transforms over Finite Fields

This article introduces a systematic study for computational aspects of classical wavelet transforms over finite fields using tools from computational harmonic analysis and also theoretical linear algebra. We present a concrete formulation for the Frobenius norm of the classical wavelet transforms over finite fields. It is shown that each vector defined over a finite field can be represented as...

متن کامل

Classical wavelet systems over finite fields

This article presents an analytic approach to study admissibility conditions related to classical full wavelet systems over finite fields using tools from computational harmonic analysis and theoretical linear algebra. It is shown that for a large class of non-zero window signals (wavelets), the generated classical full wavelet systems constitute a frame whose canonical dual are classical full ...

متن کامل

2 00 7 Harmonic analysis on local fields and adelic spaces I

We develop a harmonic analysis on objects of some category C 2 of infinite-dimensional filtered vector spaces over a finite field. It includes two-dimensional local fields and adelic spaces of algebraic surfaces defined over a finite field. The main result is the theory of the Fourier transform on these objects and two-dimensional Poisson formulas.

متن کامل

Harmonic analysis on local fields and adelic spaces I

We develop a harmonic analysis on objects of some category C 2 of infinite-dimensional filtered vector spaces over a finite field. It includes two-dimensional local fields and adelic spaces of algebraic surfaces defined over a finite field. The main result is the theory of the Fourier transform on these objects and two-dimensional Poisson formulas.

متن کامل

Cyclic wavelet systems in prime dimensional linear vector spaces

Finite affine groups are given by groups of translations and di- lations on finite cyclic groups. For cyclic groups of prime order we develop a time-scale (wavelet) analysis and show that for a large class of non-zero window signals/vectors, the generated full cyclic wavelet system constitutes a frame whose canonical dual is a cyclic wavelet frame.

متن کامل

Structure of finite wavelet frames over prime fields

‎This article presents a systematic study for structure of finite wavelet frames‎ ‎over prime fields‎. ‎Let $p$ be a positive prime integer and $mathbb{W}_p$‎ ‎be the finite wavelet group over the prime field $mathbb{Z}_p$‎. ‎We study theoretical frame aspects of finite wavelet systems generated by‎ ‎subgroups of the finite wavelet group $mathbb{W}_p$.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006